
Personalized E-commerce Search

A thesis submitted in partial fulfillment
of the requirements for the degree of

BACHELOR OF TECHNOLOGY

in

Electrical Engineering

by

Arnav Kansal
Entry No. 2013EE10440

Under the guidance of

Prof. Jayadeva

Department of Electrical Engineering,
Indian Institute of Technology Delhi.

April 2017.

Certificate

This is to certify that the thesis titled Personalised E-commerce Search

being submitted by Arnav Kansal for the award of Bachelor of Technol-

ogy in Electrical Engineering is a record of bona fide work carried out by

him under my guidance and supervision at the Department of Electrical

Engineering. The work presented in this thesis has not been submitted

elsewhere either in part or full, for the award of any other degree or diploma.

Dr. Jayadeva

Professor, Department of Electrical Engineering

Indian Institute of Technology, Delhi

Abstract

In the past years there has been an explosive growth in the E-commerce

sector. Improving user experience has a direct impact on the probability

of the user returning to the same website. This B.Tech project aims at

using machine learning methods to improve the Personalization in the E-

commerce Search space by re-ranking the search results shown to the users.

Various techniques have been explored such as using Classifier to Re-rank,

Collaborative filtering and also Learning to Rank algorithms(LTR). Linear

feature models belonging to the LTR class outperformed all other methods.

Many search strategies have been used to gain speed up and ensure global

maximum of the evaluation metric while learning the linear feature model. A

regularization framework was introduced in the linear feature model. Finally

a neural network architecture was tried to compare with the linear feature

model. Also the function profile of the evaluation metric for the linear feature

model was plotted by projecting the profiled points on 2D to give more insight

about the metric.

Acknowledgments

I would like to thank all the people who helped me with this project. I

acknowledge the support, encouragement and invaluable feedback given by

my supervisor Dr. Jayadeva, Professor, Electrical Engineering Department

during the project. I was continuously motivated by him and am extremely

lucky to have a supervisor who cared so much for my work. I would also

like to thank Mayank Sharma, Dr. Jayadeva’s PhD student for his constant

support. Further, I would like to express my gratitude towards the evaluation

committee for their gainful suggestions.

Arnav Kansal

Contents

1 Introduction 1

1.1 Introduction . 1

1.1.1 Personalization . 1

1.2 Data set . 2

1.3 Mathematical Formulation . 3

1.4 Evaluation Metric . 3

2 Classifier Based Re-Ranking 5

2.1 Idea . 5

2.2 Feature Extraction from Raw Data 5

2.3 Re-Ranking using Classifier 6

2.4 Results . 8

3 Collaborative Filtering 9

3.1 Matrix Factorization . 9

3.1.1 Alternating Least Squares 11

3.1.2 Data Preprocessing . 11

3.1.3 Results . 11

4 Learning to Rank 13

4.1 Pointwise approaches . 13

4.2 Pairwise approaches . 14

4.2.1 Ranknet . 14

4.3 Listwise path . 15

4.3.1 ListNet . 15

4.3.2 Linear Feature Model 16

c© 2016, Indian Institute of Technology Delhi

4.4 Results . 19

4.5 Improving the Linear Feature Model solver 19

4.5.1 Other search strategies 19

4.5.2 Multi Trajectory Local Search [MTSLS] 20

4.5.3 Global optimization to find Feature Weights 22

4.6 Regularizing the linear feature model 25

4.6.1 Viewing the function profile 27

4.7 Adding Non-Linear Features 28

5 Conclusion 31

Bibliography 32

A Feature Extraction from raw log files 34

A.1 Train Test statistics . 36

A.2 Some Statistics of raw data 36

Chapter 1

Introduction

1.1 Introduction

Search engines used in the e-commerce space differ(benefit) over the usual

search engines because of the availability of transactional data. In e-commerce

websites users also show unique search patterns, based on various factors

such as their likes, needs, purchasing power, etc. These unique patterns of

the users can be learned and applied to re-rank the basic(unbiased) search

results corresponding to a query.

This B.Tech project aims at using machine learning methods to :

• Improve the Personalization in the E-commerce Search space

• By re-ranking the search results shown to the users.

1.1.1 Personalization

Personalization is basically targeted marketing. Users of an e-commerce plat-

form are unique, and have varied interests. The concept of an unbiased search

does not completely fulfill the need of the users, unlike usual search engines.

Thus targeted marketing results in enhanced user experience. To elucidate

upon this, assume that there are 2 different users X and Y. One of them has

recently purchased a smart phone, and the other one bought a bed. Now

both of them enter a search query cover. It makes sense to show X mobile

covers, and Y bed covers.

c© 2016, Indian Institute of Technology Delhi

1.2 Data set 2

(a) User X shown mobile covers

(b) User Y shown bed covers

Figure 1.1: Personalized Results

1.2 Data set

The dataset used was given by DIGINETICA for CIKM Cup 2016 Track

2 [4]. This data has anonymized search and browsing logs, product data

and anonymized transactions records. The anonymized data hides a lot of

information for the purpose of this study, but after the AOL search leak

that happened in 2005, it has been impossible to get real data that has not

been anonymized. Further, the data is present in raw form, i.e. log files.

To describe the transactions and product data, a total of 6 files have been

provided in the data, which correspond to Queries and their corresponding

search results, product meta data, click/view and purchase data. The data

has been partitioned already in the train test split.

Train Queries 636,160
Test Queries 286,967

Table 1.1: Train-test split

In the data for a given query, a list of ranked results produced by the un-

derlying(unbiased) search engine of the e-commerce is given. This list is

generated based on only the relevance of product for a given query, and does

c© 2016, Indian Institute of Technology Delhi

1.3 Mathematical Formulation 3

not take into account any user preference. So our task is to incorporate user

preference in this list and produce a new, re ranked list.

1.3 Mathematical Formulation

Given a set of queries Q, each query q ∈ Q is associated with a user u issuing

the query on the search engine. The search engine returns to the user u, a

list of items lq in answer to the query q.

The task at hand is to re rank items within lq to provide optimum ranking

results. This optimality is with respect to a ranking measure which takes

an ordered list as an input and returns a scalar which depicts the extent of

correct positioning of items according to relevance with respect to the query.

For our problem lets assume we have a training and a test data. The training

data must have a set of queries Q, with each query having a list of items

associated with it along with meta information regarding the user and the

items present in the list. Each item i in the list lq corresponding to the query

q, must have a scalar relevance attached to it. The task is then to reorder

the lists of items present in the test set.

1.4 Evaluation Metric

Normalized Discounted Cumulative Gain(NDCG), the standard evaluation

metric employed in any Information retrieval task is used here for calculating

the accuracy of the re ranked list. NDCG is a function of order of items of a

list and is determined by the positioning of items defined by their relevance.

Relevance is a variable associated with each item of a list which may be

known for the training dataset before hand. The Discounted cumulative gain

is calculated for a given list of items corresponding to a query as follows.

DCGquery =

p∑
i=1

2reli − 1

log2(i+ 1)
(1.1)

c© 2016, Indian Institute of Technology Delhi

1.4 Evaluation Metric 4

Here p denotes the number of products for the query.

reli =

0, if product is never clicked

1, if product is shown to user in search and clicked

2, if product is shown, clicked and purchased by user

(1.2)

This basically says that more important items should be placed in front of

the list as items further away in the list will be penalized with a decaying

factor of the index in the list at which the item is finally placed. The NDCG

however, is calculated by dividing the DCG of a query with the maximum

possible value of DCG which can be attained by shuffling the order of the

current list. This definition of NDCG is valid for one list corresponding to

a query in the dataset. The total metric is calculated by averaging this over

all queries.

c© 2016, Indian Institute of Technology Delhi

Chapter 2

Classifier Based Re-Ranking

2.1 Idea

Aim of the problem is to achieve a maximum NDCG score, on the final

presented ranking by predicting correctly the relevance and re-ranking based

on it. So, the following approach was tried at first.

• Finding a classifier to predict relevance of an item, given (query,user).

• and to use classifier outputs to Re-rank items for each query.

2.2 Feature Extraction from Raw Data

The first step would be to find relevant features to describe query-user-item

tuple. Let the list of items associated with query q be lq. For each item in

this items list l, a query,item pair is chosen and some fixed set of features are

extracted for the pair. So the query,item pair is now denoted by a feature

vector X. The computed features can be broadly classified into these five

categories.

User features: which describe the viewing and purchasing history of the

user.

Query features: which contain the ranking measures of the list returned

by the unbiased search engine, such as the initial value of NDCG of the list.

Item features: these describe the item transaction history, along with its

meta-data. These also contain the descriptive statistics of ranking achieved

by the item in all other searches.

Query-Item features: this contains a similarity measure (Jaccard Coeffi-

cient) of the query string and product meta-data.

Session features: These contain the average session duration, and average

c© 2016, Indian Institute of Technology Delhi

2.3 Re-Ranking using Classifier 6

amount of queries issued in the session.

The details of the extraction process from raw log files is given in the feature

extraction appendix. A

2.3 Re-Ranking using Classifier

The feature extraction phase would be followed by training the classifier.

This classifier should meet some special needs, such as the ability to output

class probabilities instead of output label directly, as explained further. The

final part would be to somehow use the classifier outputs to re rank the search

results.

One option is to directly rank the items based on the output target, the

relevance. But in our case the list of items per query is large, and the output

relevance belongs to only three classes. So much of the items will get clus-

tered according to their class outputs. And finding the correct order between

elements of same class will not be done.

This problem has been solved using methods employed in [10]. Consider that

the classifier trained for predicting relevance, outputs probabilities for differ-

ent classes. So given the feature vector which describes the (query,session,user,item)

tuple, the classifier gives out a probability of confidence for each of the rele-

vance class, namely {0,1,2}. Now the aim of the problem is to maximize the

NDCG metric.

Consider the NDCG metric, as given in (1.1), which is a monotonic decreasing

function of i, which is the index in the list. The item score is then calculated

by taking into account the probability of an item belonging to each the of

three classes. So a scoring function is used as given by [12] which maximizes

the expected value of the NDCG metric given the tuple described above.

E[

p∑
i=1

2reli − 1

log2(i+ 1)
] =

∑ E[2reli − 1]

log2(i+ 1)
(2.1)

c© 2016, Indian Institute of Technology Delhi

2.3 Re-Ranking using Classifier 7

As larger relevance labels must appear in the front of the list, and the de-

nominator is decaying as i increases, the scoring function is chosen as

score(item,(query,user,session)) = E[

p∑
i=1

2reli − 1] (2.2)

which by the linearity of expectation breaks into

score(item,(query,user,session)) =

p∑
i=1

[3× prob(relevance(item) = 1)+

prob(relevance(item) = 2)]

(2.3)

It is shown that even though DCG errors are bounded by classification errors

[10], the bound is only upper. Finally sorting items given by their score as

calculated above will give us a ranking which tries to maximise NDCG.

Classifier Training

Feature Extraction

Query DataItem Views

Item Clicks

Item Purchases

Product Meta-data

Figure 2.1: Training Pipeline

Sort items by scores Output Probabilities

Trained Classifier
Test Queries with

initial ranked results

Figure 2.2: Testing Pipeline

c© 2016, Indian Institute of Technology Delhi

2.4 Results 8

2.4 Results

Classifier Accuracy[Hold out set] NDCG Improvement (baseline)
Nearest Neighbors 95.7 0.442 15.7%

Linear SVM(SVC)* 91.7 0.467 22.25%
Decision Tree* 96.22 0.438 14.66%
Random Forest 93.4 0.449 17.53%

AdaBoost 93 0.388 1.56%
Logistic Regression 91.9 0.468 22.5%

Table 2.1: Classifier Re-ranking results

*Platt’s scaling [14] for SVM and probability estimate for Decision Tree used

for determining output probability.

Multiple classifiers which do have a measure of probability for class outputs

were trained. As the training size of the data is close to 1.5M samples after

performing preprocessing steps as shown in A. At first linear models were

tried which started to give decent results compared to the baseline results

given by the data provider. The classification task was performed using scikit

library [13]. The baseline provided by the data provider is simply sorting

based on score calculated as:

score(item) = views(item) + 2× clicks(item) + 3× purchase(item) (2.4)

The baseline score given is NDCG: 0.382.

As is observed from the results, using this naive approach gives us significant

improvements over the baseline. Out of the various classifiers, the logistic

regression classifier gives us the best results for the computed features.

c© 2016, Indian Institute of Technology Delhi

Chapter 3

Collaborative Filtering

The relevance prediction approach was followed by the standard techniques

of recommender systems. Recommender systems are, as the name suggest,

systems that recommend user items that match the users interests, and also

the items that ’similar’ users viewed or purchased.

So essentially, it takes into account not only the user’s specific interests, but

also the interests of users who have shown matching viewing or purchase

patterns in our case.

The most widely used technique in recommender systems is Collaborative

filtering(CF). The matrix factorization technique which belongs to the class

of latent factor models, which became hugely popular after the Netflix Prize

[1] was used for this purpose.

3.1 Matrix Factorization

Matrix Factorization is a latent factor based formulation of a collaborative

filtering model. In this model a user item preference matrix is first designed.

So for each (user,item) pair (X,y), there exists a preference rating for a user

X to an item y. Let us call this matrix M. If the space of users is spanned

by the vector U, and items by I then,

M : U × I → R (3.1)

This matrix can comprise of explicit ratings in the form of like or dislike, like

in the case of comments or posts on facebook, or these can be implicit, like

in our case where there is no explicit ratings present. This implicit feedback

in our case can be extracted from the provided transactional data, such as

the click, view and purchase data. For example each view, click or purchase

of an item y, by the user X, could contribute partially to the MX,y. In the

c© 2016, Indian Institute of Technology Delhi

3.1 Matrix Factorization 10

Figure 3.1: Matrix Factorization

classical matrix factorization approach as discussed in [9], users are mapped

to a latent factor space of a fixed dimension. Items are also mapped to the

same space. Now users and items can be compared as they are vectors of the

same dimension in the same latent factor space.

Similarity between user X, and item y in this space is given by the dot

product of the two transformed vectors. After transforming each user X to

vector UX , and each item to the vector Iy, the computed dot product is then

said to be the original rating MX,y.

MX,y = UT
XIy (3.2)

In this preference matrix, most of the entries are unknown, because of the

nature of the transaction data. A user is very likely to have interacted with

very few of the items present in the universe of items. Also the fact that a

user did not buy/click an item also points to the fact that the user might

actually, not like the product.

So the general methods of Singular Value Decomposition which is solved by

stochastic gradient descent as done by [5] are not applicable in this case.

And special methods as proposed by [6] for implicit feedback data sets has

to be employed.

c© 2016, Indian Institute of Technology Delhi

3.1 Matrix Factorization 11

3.1.1 Alternating Least Squares

In the method talked above, there is a fundamental difference from the stan-

dard SVD formulation is the loss function. Comparing to the

min(
∑
X,y

((MX,y − UT
XIy)

2 + λ|UX |2+µ|Iy|2 (3.3)

we now have our loss function as

min(
∑
X,y

(CX,y(PX,y − UT
XIy)

2 + λ|UX |2+µ|Iy|2 (3.4)

Here P is a matrix of one’s and zeros with one’s at positions where UX has

interacted with Iy. C is the matrix which denotes the confidence, that is in

our case, the number of purchases/clicks of item Iy by user UX . When any of

UX or Iy is fixed, the problem can be solved by quadratic optimization. So

alternating least squares proceeds by fixing one UX , finds the corresponding

Iy. This is followed by fixing the new found Iy and finding the next U. This

process is carried till convergence.

3.1.2 Data Preprocessing

For the case of our data, there are 141,127 unique users, and 81,160 items

who have had interaction with the users in the form of clicks, views or pur-

chases. The resulting matrix is a huge, and has potentially 10B entries. The

interesting fact is that for our case, only about 468,752 of these entries are

known, and the rest are unknown. So we are dealing with a matrix which has

sparsity of about 99.995%.The entries are filled with the following weights.

CX,y = α1 × num˙purchases + α2 × num˙clicks + α3 × num˙views

3.1.3 Results

The values of αi’s were found by doing a grid search over a reduced space of

[1,3,30,300,3000] evaluating the model’s NDCG for each case. The maximum

c© 2016, Indian Institute of Technology Delhi

3.1 Matrix Factorization 12

value of NDCG was found to be 0.384 with the α values being [30,3,1].

The model here managed to perform just better than the baseline score,

and did not perform as well as the classifier approach basically because of

the absence of query information, and other product meta data, from the

model.The above model suffered from the absence of extra available infor-

mation of the given problem and modeled only the user-item interactions. As

shown in [8], it is almost always better to use contextual information about

the user-item pairs. In our case, the context might mean a lot of things, such

as the given query, the ordering of the initial ranked list, and other settings

such as the session characteristics. So other methods like like the Learning

to Rank methods which employ underlying supervised learning algorithms

were deployed next.

c© 2016, Indian Institute of Technology Delhi

Chapter 4

Learning to Rank

Finally after trying the classical machine learning approach, and having gone

over with the collaborative filtering techniques, the Learning to rank method-

ology was adopted.

Learning to Rank is a general scheme in which we construct a machine learn-

ing approach to construct a model which outputs ranks. So what we had

done explicitly in the naive model in a two stage process by first finding a

classifier and then using its outputs to re rank, hinging on the fact that the

errors in NDCG would be bounded by the errors in classification, is some-

what taken care of intrinsically by the model itself.

In this methodology, the dataset is first divided into parts based on the spe-

cific query. Then for that query, and the list of items that are presented along

with that query, meaningful features are used to learn the ranking of these

items given the query and the extracted features. A loss function is then

created by taking three different techniques. All of these three techniques

have been discussed and have been put to task for our problem. Further

RankLib [3] was used for performing the learning task.

4.1 Pointwise approaches

In this approach, the cost function is constructed in much the same way as

any other regression, or classification formulation. The dataset which is di-

vided into parts by query is taken, and for each query,item pair a relevance

is learned. The final list of items is just sorted based on this relevance.

Notice that the approach used initially at the problem was much the same,

only that instead of letting the model take care of the scoring, we had iso-

lated the model from the scoring stage and each of the step was performed

independently.

c© 2016, Indian Institute of Technology Delhi

4.2 Pairwise approaches 14

As not much has evolved of the point wise approaches for ranking, as it is very

similar to basic regression, we use the Random Forest Ranking approach.

4.2 Pairwise approaches

In the pairwise approach, the cost function is altered to support taking all

pairs of items from the list of returned items, given a query.

4.2.1 Ranknet

The underlying machine learning tool in the ranknet [2] procedure is a neural

network. Now this neural network takes in a feature vector, and its output

is called the score of the feature. This score is calculated for two items, is

used in the cross entropy loss, where the cost function is probabilistic. This

function converts the difference of outputs for two items (i,j) which is δi,j to

a probability as follows.

P(item-i comes before item-j in ranking) = logit(δi,j) (4.1)

here δi,j is given by the difference of output of features given by item i, and

item j given a query to the neural network. The cross entropy loss is given

by:

C = −P ′i,jlog(Pi,j)− (1− P ′i,j)log(1− Pi,j) (4.2)

where P ′i,j is the probability calculated by the model, and Pi,j is the true

training value. After calculating the cross entropy loss using this function,

the model training is quite similar to the regular training procedure of a

neural network, in the sense that the forward propagation is carried out in

the same way for both the samples with itemi and itemj, the backpropagation

step differs a bit however. The cost is calculated for both samples, but the

gradient of the cost sent for backpropagation is the difference of gradients

for both samples. So finally, the weights are updated as follows as shown in

[2]:

wk → wk − η(λi,j(
∂outi
∂wk

)− ∂outj
∂wk

)) (4.3)

c© 2016, Indian Institute of Technology Delhi

4.3 Listwise path 15

Where outk is the output of neural network with feature corresponding to

item k, and λi,j is given by
∂C(outi−outj)

outi
For our case one hidden layer was

chosen with number of nodes in the layer equal to the number of features.

As this training procedure was taking very long time to tune, the number of

hidden layers or the number of nodes was not fine tuned. The unavailability

of caffe like frameworks which could be heavily parallelized on GPU was

limiting this model and the bare structure coded on java in Ranklib was not

taken any further.

4.3 Listwise path

This is a more holistic answer to the given problem of ranking and indeed the

results achieved with this technique speak for themselves. In this technique

basically the loss is constructed for the entire list of items given the query.

4.3.1 ListNet

ListNet [16] is a model built up on RankNet itself. There are subtle differ-

ences however. Here the complete list of items for a query is given to the

model as input. The probabilistic cost function now used is analogous to

multi class logistic loss, where ranknet had its similar to 2 class logistic loss.

Now the probabilistic cost function is defined for a list l which has n items

and the scores of the neural network for each item in the list denoted by s is:

Ps,l =
n∏

i=1

esi∑
j e

sj
(4.4)

Also the new loss function defined is over all lists, corresponding to all queries.

The loss for a particular query which has a list of items l, with neural net

output scores s and actual labels z is given by:

L(s, z) = −
∑

l′∈perms(l)

Pz,l′log(Ps,l′) (4.5)

c© 2016, Indian Institute of Technology Delhi

4.3 Listwise path 16

where perms(l) is all permutations of list l. The training procedure is also

modified in a similar way in the sense that now gradient of cost used to

update weights of the neural network are found by calculating cross entropy

loss for the entire list of items. The model suffered from the same problem

as Ranknet in terms of time taken for training the model.

4.3.2 Linear Feature Model

Lastly, we try a linear feature based model for ranking [11]. In this approach

the model directly tries to optimize for the maximum value of the evaluation

metric for the information retrieval task over the entire list. It tries to do so

by assuming a scoring function which is linear in the features. The model is a

linear feature model with weight vector associated with it w. The dimension

of w is that of the constructed feature vector X. For every item i in a list

l, the score of item i is calculated as taking the wTX, with the the feature

vector associated with the item i for that list. The next part of the algorithm

simply reorders the items of the list according to this score.

Training the model

The task at hand is to produce the best ranking of items in the list according

to an evaluation metric. Now our model must be such that maximum NDCG

is achieved over the testing data. Scoring function is linear in the features.

Score(X) = wTX (4.6)

w is found by maximizing the NDCG directly.

w = arg max
w′

∑
train data

NDCG(lw′) (4.7)

Where lw is permutation of list l achieved by sorting l according to scores of

items i in l by w. The following strategy is chosen for finding the best w.

c© 2016, Indian Institute of Technology Delhi

4.3 Listwise path 17

Coordinate Ascent

The objective function is,

max(
∑

train data

NDCG(lw′)) (4.8)

This optimization process is completed with coordinate ascent, which basi-

cally is a local search procedure, in which all parameters except one in w are

fixed, and it is varied to find maximum. This process is repeated multiple

times, till convergence.

In the model it is assumed that the weight vector is non negative. This

assumption is based on the fact that the features chosen are only positively

contributing the relevance.

This is a very strong constraint and actually reduces the search space to

the k-simplex where the feature is k+1 dimensional as shown in [11]. This

constraint may be relaxed when using other local search procedures.

Some key points to note for the model are:

• Two models are equivalent if they produce the same ranking.

• Two models will guarantee the same ranking if they are scaled versions

of each other. i.e. given w1 and w2, w1 = scaled(w2).

• Thus after every iteration of the optimization procedure w is normal-

ized such that the optimization in one step is in Rd but overall the

search space is contained in the d-simplex.

Given below is the pseudo code of the search strategy employed.

c© 2016, Indian Institute of Technology Delhi

4.3 Listwise path 18

Algorithm 1 Coordinate Ascent

1: function CA(X,num-iter,tol, num-restart). Where X - data matrix obtained
after feature extraction, dim - (no. queries* no. items) x feature dimension

2: bestModelscore = 0
3: for k = 1 to num-restart do
4: w = size(w)−1 * vector of ones of length feature dimension
5: signs = -1,0,1
6: startscore = scorer(w,X,Q)
7: consecutive-fails = 0
8: while consecutive-fails < len(w)-1 do
9: Shufflefeats(w)

10: for j = 1 to feat dimension do
11: origwt = w[j]
12: for k = 1 to len(signs) do
13: step = stepbase * w[j]
14: for l = 1 to num-iter do
15: w[j] = w[j] + signs[k]*step
16: if l < num-iter-1 then
17: step = step * stepScale
18: end if
19: score = scorer(w,X,Q)
20: if regularize then
21: score = score - penalty(w)
22: end if
23: if bestscore > score then
24: bestscore = score
25: succeeds = true
26: end if
27: end for
28: if succeeds then
29: break
30: else
31: w[j] = oldwt
32: end if
33: end for
34: if succeeds then
35: normalize(w)
36: bestWeight = w
37: end if
38: end for
39: end while
40: end for
41: end function

c© 2016, Indian Institute of Technology Delhi

4.4 Results 19

4.4 Results

The results of the above discussed learning to rank methods have been com-

piled as follows.

LTR Method type NDCG Improvement(baseline)
RandomForest PointWise 0.460542 20.4%

RankNet Pairwise 0.349715 -8.6%
ListNet ListWise 0.418020 9.42%

Coordinate Ascent ListWise 0.480967 25.65%

Table 4.1: L2R results

Here on an average we were able to achieve better results than our initial

methods, except one case of Ranknet. However we can observe, that from

Ranknet to Listnet, i.e changing the formulation slightly showed drastic im-

provements in model quality. Also here again, linear models have shown best

results.

4.5 Improving the Linear Feature Model solver

Finding w using Coordinate Ascent is slow and may not guarantee a global

maximum. Even though the latter problem may be resolved partially by

performing the search using different random restarts and also shuffling the

set of weights randomly after every pass, there still is scope of improvement

both in the time taken to reach a maxima and also the trueness of it.

For resolving these two issues two other search strategies were used.

4.5.1 Other search strategies

• Multi Trajectory Local Search [MTSLS]

c© 2016, Indian Institute of Technology Delhi

4.5 Improving the Linear Feature Model solver 20

• Global Optimization Through a Support Vector Machine based Adap-

tive Multistart Strategy [GOSAM]

4.5.2 Multi Trajectory Local Search [MTSLS]

In solving the linear feature model using CA, it was assumed that the weight

vector was non negative. To relax this constraint Multiple Trajectory Search

for unconstrained optimization was used [15]. To put it simply, it is a local

search strategy. It is much similar to CA in the sense that it tries to do a

line search for one dimension at a time.

The basic key points of the procedure are given as follows:

• Works like CA by considering one weight at a time.

• At any point in the search space hops back a step or front half a step

adaptively setting step.

• Faster than Coordinate Ascent*.

* Faster per iteration over length of features.

Comparing local Search strategies

MTSLS is not limited by the non negative weight constraint found in the CA

formulation and also is advantageous in terms of speed.

• Each sub-iteration of CA involves 3 calls to external ranking function

which goes over the entire data set.

• MTSLS cuts this to 2 calls in most of the cases.

MTSLS at every sub iteration only checks if objective is increasing by increas-

ing or decreasing a weight, however in CA other than these two possibilities

the case of dropping the feature of the particular dimension is also checked.

This extra check has an extra call to the objective function which in turn is

c© 2016, Indian Institute of Technology Delhi

4.5 Improving the Linear Feature Model solver 21

Algorithm 2 MTSLS

1: function MTSLS(X,num-iter,tol) . Where X - data
matrix obtained after feature extraction, dim - (no. queries* no. items)
x feature dimension

2: w = random vector of length feature dimension
3: oldscore = scorer(w,X,Q)
4: step = MINSTEP
5: improve = true
6: for i = 1 to num-iter do
7: if improve is false then
8: step = step/2
9: if step < MINSTEP then

10: step = base1 + random(0,base2)
11: end if
12: end if
13: for j = 1 to feat dimension do
14: w[j] = w[j] - step
15: afterscore = scorer(w,X,Q)
16: if abs(afterscore-beforescore) < tol then
17: w[j] = w[j] + step
18: else
19: w[j] = w[j] + 0.5 step
20: afterscore = scorer(w,X,Q)
21: if abs(afterscore-beforescore) < tol then
22: w[j] = w[j] - 0.5 step
23: else
24: bestw = w
25: end if
26: end if
27: end for
28: end for
29: end function

Table 4.2: Speedup - Time comparison

Local Search Strategy NDCG* Time(300 iterations)
CA 0.480967 38m1.011s

MTSLS 0.47895 33m57.753s

defined over the entire dataset, so cutting one call every sub iteration results

in a decent speedup.

c© 2016, Indian Institute of Technology Delhi

4.5 Improving the Linear Feature Model solver 22

* Max among 10 models obtained from different Random Restarts.

4.5.3 Global optimization to find Feature Weights

In MTSLS speedup has been gained from CA but still we are not very sure

of the global maxima being attained by the local search procedures employed

above. Thus Global Optimization Through a Support Vector Machine based

Adaptive Multistart Strategy [GOSAM] [7] has been used. The main ideas

behind GOSAM are that it:

• Tries to learn the structure of local maxima.

• Uses this information to find next start for Local Search.

Algorithm overview

1. For n points (xi), obtain local maxima f(xi) using Local Search and store

in set S.

Do while termination criteria is met.

• Fit an SVR through S.

• Find maxima of the obtained SV regressor.

• Start local search from this new point.

• Add this point to S.

Figure 4.1: Illustrating the working of GOSAM - Function for global opti-
mization. Initial local maxima found.

c© 2016, Indian Institute of Technology Delhi

4.5 Improving the Linear Feature Model solver 23

Figure 4.2: Fit SVR through the local maxima.

Figure 4.3: Maximum point of SVR found.

Figure 4.4: Starting local search from the SVR max.

GOSAM again requires to find a maximum point of the Support vector Re-

gressor. This again is a non linear optimization problem, however the decision

boundary of the svr is thankfully a linear combination of the support vectors

and its derivative can be found. Thus vanilla gradient descent can be used

to find its maximum.

Thus the decision boundary f(x) can be written in terms of the Lagrange

multipliers (α+
i and α−i) and the kernel function.

c© 2016, Indian Institute of Technology Delhi

4.5 Improving the Linear Feature Model solver 24

f(x) =
L∑
1

(α+
i − α−i)K(x, xi) + b

Correspondingly the derivative of the surface is defined as follows for the

RBF Kernel case.

∇(f) =
L∑
1

−2γ(α+
i − α−i)K(x, xi)x

Table 4.3: GOSAM SVR Max strategy comparison

Strategy [SVR max] NDCG
MTSLS 0.468524

GD 0.478758

Figure 4.5: GOSAM over time

GOSAM solution gives better train score as solution closer* to global maxi-

mum is chosen. But still is a little behind the CA solution in the test scores.

This may be some form of over fitting that seems to have crept in. Also the

GOSAM procedure has too much of tunables as each iteration of involves

fitting an SVR curve and svr fitting itself has so many parameters.

c© 2016, Indian Institute of Technology Delhi

4.6 Regularizing the linear feature model 25

Algorithm 3 Gosam

1: function Gosam(X,num-iter,tol, num-restart, num-starts) . Where X
- data matrix obtained after feature extraction, dim - (no. queries* no.
items) x feature dimension

2: for i = 0 to totPoints do
3: YData[i],Xdata[i] = CA() . Initialise the set of X,Y Points
4: end for
5: k = totPoints
6: while iteration < nMaxSvrIteration do
7: regressor = SVMRegressor()
8: newPt = SVRMax()
9: YData[k],Xdata[k] = CA(newPt)

10: k = k+1
11: iteration = iteration + 1
12: end while
13: maxscore = 0
14: for i = 0 to k do
15: if Ydata[i] > maxscore then
16: bestwt = XData[i]
17: maxscore = YData[i]
18: end if
19: end for
20: end function

4.6 Regularizing the linear feature model

Finding the weights using the GOSAM procedure gave us a hint of overfitting

and thus over and above the n-fold cross validation that was being regular-

ization is adopted. The question was how to introduce regularization in this

framework to ensure that we are not overfitting? A new method for regular-

ization has been tried. It is done in the following way. At the stage where

the evaluation metric is computed for a model state, this score is penalized

by some form of regularizer. Many forms of regularizer are used and tested

in this setting are described below: Old objective to be maximized was∑
q∈Q

NDCG(lw)

c© 2016, Indian Institute of Technology Delhi

4.6 Regularizing the linear feature model 26

Where lw is permutation of list l achieved by sorting l according to scores of

items i in l by w.

This score was earlier maximized using CA, MTLSLS and also GOSAM

procedures. Now for regularized case the objective would become:

(
∑
q∈Q

NDCG(lw))− α||w||k

where k could be 1 for L1 and 2 for L2 norm.

Other than these standard norm regularizer a different strategy was used for

the regularizer.

Modified Regularizer

(
∑
q∈Q

NDCG(lw))− α||w − reg||k

Where reg = 1/numfeats*[1 1 ... 1] Here for k=1,2, the regularizer is called

modified L1,L2. Again these objectives were maximized by using different

solvers and the results are compiled as follows.

Table 4.4: Comparison between different Regularizers

Model Solver NDCG (5Fold CV) NDCG(Max)
Unregularized CA - 0.480967

L1 MTSLS 0.4731 +- 0.0034 0.4774
L2 MTSLS 0.4744 +- 0.0027 0.4784
L2 CA 0.4837 +- 0.0027 0.4844
L1 Gosam 0.4689 +- 0.0059 0.4739
L2 Gosam 0.4759 +- 0.0053 0.4821

Motivation behind modifying version of the regularizer

• In the local search procedure the search was getting initiated from reg.

• The idea was to restrict going to far away from this initial solution.

c© 2016, Indian Institute of Technology Delhi

4.6 Regularizing the linear feature model 27

• Also viewing from the model complexity the simplest model would be

the normal vector which would simply score the data point as the sum

of its features. Thus this regularizer can be viewed as the model closest

to the simplest model which is w = 1/numfeats *[1 1 1 ... 1] by distance.

Modified L1/L2 scores

Table 4.5: Modified Regularizers results

Solver NDCG(5FoldCV) NDCG(Test)
CA L1 0.4804 +- 0.006 0.486541
CA L2 0.4826 +- 0.003 0.484879

Gosam L2 0.4727 +- 0.007 0.485773

4.6.1 Viewing the function profile

After having tried many optimization techniques to solve for the maximum,

plotting the surface of the objective was attempted. For this purpose pri-

marily two schemes were used.

• Projecting the input data to 2d and finding the function profile.

• Finding the function profile in the original feature dimension and then

reducing its dimensionality to 2d.

The former method did not perform so well and in fact the maximum NDCG

attained by it was lower than the baseline. This means that the first two

principle components of the data were not enough for the task.

The second method yielded some interesting plots. The trend line plotted

in pink color shows the trajectory taken by the search in the direction that

causes the maximum of the objective. This 2d line was back projected to the

original feature space. The vector obtained looked like the following. The

19th feature id is in fact the one causing most change in the NDCG, and was

also verified by logging the search again by noting the change incurred in

the NDCG by changing the feature weight. The 19th feature represents the

median price. The median price is the median price of all items for a query.

c© 2016, Indian Institute of Technology Delhi

4.7 Adding Non-Linear Features 28

Figure 4.6: Function profile stem plot with maximum increase line

4.7 Adding Non-Linear Features

In the context of directly optimizing for the NDCG the linear feature models

have been showing the best results. Further non linear features should be

included. In a direct optimization setting a neural network structure was

made with one hidden layer and the same number of nodes in it as the input

layer. To actually add non linearity, the hidden layer nodes had a RELU

activation. The output from the final layer was used as the score of the

input.

c© 2016, Indian Institute of Technology Delhi

4.7 Adding Non-Linear Features 29

Figure 4.7: Feature direction showing maximum increase in original space

Σ

...
...

x1

ϕ1

ω 2
1

x2

ϕ2

ω 2
2

x3

ϕ3 ω2
3

xn

ϕn

ω
2
n

For training this neural network for direct NDCG maximization the total set

of weights was flattened and put in a one dimensional array.

ω1
11 ω1

12 ... ω1
nn ω2

1 ... ω2
n

The score of a data point instead of being wT X is now:

c© 2016, Indian Institute of Technology Delhi

4.7 Adding Non-Linear Features 30

out =
∑
i

ω2
i max(

∑
j

(ω1
jixj), 0) (4.9)

So the final objective is now maximized with respect to these weights. This

objective maximization is taken care of by MTSLS as the number of param-

eters (the number of elements in the flattened array) are O(d2) where d is

the dimension of the input data. The results clearly show that linear feature

Table 4.6: Linear Feature Model v/s NN

Model NDCG
Linear Feature Model 0.4865

NN trained using MTSLS 0.459778

model was performing better.

c© 2016, Indian Institute of Technology Delhi

Chapter 5

Conclusion

The problem of e-commerce search personalization was viewed at from dif-

ferent angles, and various techniques that are and have been used to solve

this problem were explored.

The first approach, was a new style of solving this problem, but was limited

by the specificity of the model, and it was heavily dependent on the choice

of evaluation metric. For example changing the metric from NDCG to some

other information retrieval measure may not give similar results for the naive

model. In this approach linear models, such as linear SVM, and logistic re-

gression showed better results.

Other techniques such as collaborative filtering were also tried, but the type

of sparse data in terms of number of users and items, in comparison to the

number of user-item interactions was very less, so any matrix/tensor fac-

torization related technique from CF would have to deal with a very high

sparsity of about 99.995%. This is why the results obtained from that proce-

dure were insignificant. Although this is the technique, most large industries

which rely on recommender systems use.

Finally the learning to rank approach, which is employed in various search

engines, for the sole purpose of personalization gave significant results. It is

seen through this experiment that even in the Learning to Rank methods,

linear methods outperformed all other methods. The regularized linear fea-

ture model solved using Coordinate Ascent method gave the best result so

far in all approaches tried with an NDCG of 0.48, which is a 25.65% increase

in search quality from the baseline given the search metric of NDCG. Given

the basic features mined from the raw logs, this regularized linear feature

model solved using CA gives us an NDCG that puts us on the 3rd position

of the CIKM CUP2016, Track 2.

c© 2016, Indian Institute of Technology Delhi

Bibliography

[1] James Bennett and Stan Lanning. The netflix prize. In Proceedings of

KDD cup and workshop, volume 2007, page 35, 2007.

[2] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole

Hamilton, and Greg Hullender. Learning to rank using gradient descent.

In Proceedings of the 22nd international conference on Machine learning,

pages 89–96. ACM, 2005.

[3] V. Dang. The lemur project-wiki-ranklib.

[4] Diginetica. Cikm cup 2016 track 2: Personalized e-commerce search

challenge. http://competitions.codalab.org/competitions/11161,

2016. Online; accessed 20 October 2016.

[5] Simon Funk. Netflix update: Try this at home. =http://sifter.org/ si-

mon/journal/20061211.html, Dec 2006.

[6] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for

implicit feedback datasets. In 2008 Eighth IEEE International Confer-

ence on Data Mining, pages 263–272. Ieee, 2008.

[7] Jayadeva, Sameena Shah, and Suresh Chandra. Learning Global Opti-

mization Through a Support Vector Machine Based Adaptive Multistart

Strategy, pages 131–154. Springer Berlin Heidelberg, Berlin, Heidelberg,

2010.

[8] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria

Oliver. Multiverse recommendation: n-dimensional tensor factorization

for context-aware collaborative filtering. In Proceedings of the fourth

ACM conference on Recommender systems, pages 79–86. ACM, 2010.

[9] Yehuda Koren, Robert Bell, Chris Volinsky, et al. Matrix factorization

techniques for recommender systems. Computer, 42(8):30–37, 2009.

[10] Ping Li, Qiang Wu, and Christopher J Burges. Mcrank: Learning to

rank using multiple classification and gradient boosting. In Advances in

neural information processing systems, pages 897–904, 2007.

c© 2016, Indian Institute of Technology Delhi

http://competitions.codalab.org/competitions/11161
=

BIBLIOGRAPHY 33

[11] Donald Metzler and W Bruce Croft. Linear feature-based models for

information retrieval. Information Retrieval, 10(3):257–274, 2007.

[12] C. Bourguignat P. Masurel, K. Lefvre-Hasegawa and M. Scordia.

Dataikus solution to yandex personalized web search challenge. Techni-

cal report, 2014.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[14] John Platt et al. Probabilistic outputs for support vector machines

and comparisons to regularized likelihood methods. Advances in large

margin classifiers, 10(3):61–74, 1999.

[15] Lin-Yu Tseng and Chun Chen. Multiple trajectory search for large

scale global optimization. In Evolutionary Computation, 2008. CEC

2008.(IEEE World Congress on Computational Intelligence). IEEE

Congress on, pages 3052–3059. IEEE, 2008.

[16] Tie-Yan Liu Ming-Feng Tsai Hang Li Zhe Cao, Tao Qin. Learning to

rank: From pairwise approach to listwise approach. Technical report,

April 2007.

c© 2016, Indian Institute of Technology Delhi

Appendix A

Feature Extraction from raw log

files

The following class of features was extracted from the data

• User Features

• Query Features

• Item Features

• Query-Item Features

• Session Features

User Features

• Category distribution of Purchase/View/Click history

– 1217 Categories

– vector of length of number of Categories for each purchase/view/click

features.

– ith element giving user purchase/view/click counts.

• Mean price of category wise purchase

These features model different users by capturing the historical user actions.

c© 2016, Indian Institute of Technology Delhi

35

Query Features

• Mean Reciprocal Rank (MRR)*

• Original NDCG for list*

– Reciprocal rank of item with relevance = 2(max)

– Three levels of relevance [0,1,2] (from mid term slide)

• Min/Max/Mean/Median price of list of items of Query*

• Length of Query*

– For modeling query ambiguity.

• Number of items for query*

Item Features

• Item Category

– Categorical Variable - One hot encoded [Sparse Vector]

• Item Price*

• Item Relative price in category*

– price−meanp
meanp

• Item Min/Max/Mean/Median Rank across all queries*

• Item Name Size*

• Unique views/purchases*

• Item click/view/purchase counts*

– Measures popularity

c© 2016, Indian Institute of Technology Delhi

A.1 Train Test statistics 36

Query-Item Features

• Similarity Measure

– Cosine Similarity

– Jaccard Cofficient[Easy to compute]*

• Original Rank*

– An important indicator of query-item relevance, as data is anonymized.

Session Features

• Duration of session*

• Avg number of queries per session*

• NDCG average per session*

* marked features were used only for Learning to Rank Models

A.1 Train Test statistics

For the case of Naive Classifier, and L2R methods, the raw data was filtered

to give all query-item pairs, with known user, for feature extraction as men-

tioned above. Train data was now found to be 1,443,013 samples large, and

test data consisted now of 326,651. For collaborative filtering the user-item

preference matrix was 141127 × 81106 large, as it only consisted of (unique

users) × (unique items).

A.2 Some Statistics of raw data

Some statistics of the data present in the raw log forms.

The scorer function is used in all the optimisation techniques and its pseudo

code is given as follows.

c© 2016, Indian Institute of Technology Delhi

A.2 Some Statistics of raw data 37

Table A.1: Raw Data Statisitcs

Sessions 573,935
Products 134,319,529

Products viewed from search 2,451,565
Clicks on products 1,877,542

Avg. click per session 3.271
Products purchased from search 68,818

Algorithm 4 scorer

1: function scorer(w,X,Q) . Where w is weight vector (array of
dimension - feature dimension), Q is set of queries

2: score = 0
3: for q in Q do
4: Xq = partition(X,q) . partition dataset wrt queries
5: n = size(Xq)
6: for j = 1 to n do
7: scoreq[j] = wTXq[j] . score all items in a list for a given query
8: end for
9: sort(Xq, scoreq) . Reorder list according to scores

10: end for
11: end function

c© 2016, Indian Institute of Technology Delhi

List of Figures

1.1 Personalized Results . 2

(a) User X shown mobile covers 2

(b) User Y shown bed covers 2

2.1 Training Pipeline . 7

2.2 Testing Pipeline . 7

3.1 Matrix Factorization . 10

4.1 Illustrating the working of GOSAM - Function for global op-

timization. Initial local maxima found. 22

4.2 Fit SVR through the local maxima. 23

4.3 Maximum point of SVR found. 23

4.4 Starting local search from the SVR max. 23

4.5 GOSAM over time . 24

4.6 Function profile stem plot with maximum increase line 28

4.7 Feature direction showing maximum increase in original space 29

c© 2016, Indian Institute of Technology Delhi

List of Tables

1.1 Train-test split . 2

2.1 Classifier Re-ranking results 8

4.1 L2R results . 19

4.2 Speedup - Time comparison 21

4.3 GOSAM SVR Max strategy comparison 24

4.4 Comparison between different Regularizers 26

4.5 Modified Regularizers results 27

4.6 Linear Feature Model v/s NN 30

A.1 Raw Data Statisitcs . 37

c© 2016, Indian Institute of Technology Delhi

List of Algorithms

1 Coordinate Ascent . 18

2 MTSLS . 21

3 Gosam . 25

4 scorer . 37

c© 2016, Indian Institute of Technology Delhi

	Introduction
	Introduction
	Personalization

	Data set
	Mathematical Formulation
	Evaluation Metric

	Classifier Based Re-Ranking
	Idea
	Feature Extraction from Raw Data
	Re-Ranking using Classifier
	Results

	Collaborative Filtering
	Matrix Factorization
	Alternating Least Squares
	Data Preprocessing
	Results

	Learning to Rank
	Pointwise approaches
	Pairwise approaches
	Ranknet

	Listwise path
	ListNet
	Linear Feature Model

	Results
	Improving the Linear Feature Model solver
	Other search strategies
	Multi Trajectory Local Search [MTSLS]
	Global optimization to find Feature Weights

	Regularizing the linear feature model
	Viewing the function profile

	Adding Non-Linear Features

	Conclusion
	Bibliography
	Feature Extraction from raw log files
	Train Test statistics
	Some Statistics of raw data

